If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-12t=63
We move all terms to the left:
3t^2-12t-(63)=0
a = 3; b = -12; c = -63;
Δ = b2-4ac
Δ = -122-4·3·(-63)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-30}{2*3}=\frac{-18}{6} =-3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+30}{2*3}=\frac{42}{6} =7 $
| 24=8(x+8) | | 6x-10=2(2x-5) | | (4x+2)=19x+3-3x+5 | | 4(-4x+3)+2x+4=-12 | | 4((x+1)=4(-2+x) | | 3(x+0.3)=2.3 | | 45+58+74+x=180 | | .5(4x-9)=2x+7 | | v/2-13=8 | | 10=25+(1.8)t | | 0.3p-0.05+0.1p=0.19 | | .80=1.20x-1.40 | | 3(-x+4)=7x+4 | | -6q-2=22 | | E^3x+2=1 | | x^2-17x-174=0 | | x+36+57=180 | | n=12/5n-28 | | x+4x=35;7 | | x+5x=35;7 | | y6-7=4 | | 76+60+125+x=360 | | -171-7x=79+3x | | 25=1/x.50 | | Y=15t-5 | | X+10=6x-10 | | 2x+(x=9)=153 | | 1/x=1/2x+1 | | -2(n-17)+-3=5 | | 5-5x=13-6x | | -3(j+2)=3 | | 5-5x=14-6x |